Is the Warning Effective?

Clinical Alarms Remain an Area for Patient Safety Improvement

Tobey Clark

Alarms warn of danger, alert care givers to critical medical information, or warn of adverse changes in a patient’s condition. For many years clinicians, safety professionals, and engineers have known that alarm effectiveness needs improvement. Early efforts at addressing alarm issues were undertaken by the Anesthesia Patient Safety Foundation, ECRI, and in the American Society for Testing and Materials (ASTM) standards. Alarm shortcomings fall into the categories of system design, system performance, care management, and environmental influences. False positives, missed critical alarms in some cases due to defocusing alarms, and poor human factors interfaces are issues related to design. Lack of adaptation to different patient conditions or not including a systems design approach (e.g., standardized alarm visual and audible indicators) lead to performance shortcomings. Incidents related to improper alarm setup or poor response to alarms have been reported with causes sometimes linked to a lack of vigilance, training, or staff shortages. Environmental issues such as noise sources and poor facilities design complicate matters.

Shortly after publishing a Study of Event Alarms in February 2002, the Joint Commission (JCAHO) began scoring Patient Safety Goal 6 — Improve the effectiveness of clinical alarm systems. The goal covered both technical and care management areas. Goal 6 was dropped as a hospital Patient Safety Goal in 2004. This begs the question: “Has clinical alarm improvement been significant due to JCAHO implementing Goal 6?” A quick review of deaths and injuries reported to the FDA MAUCR database searching the Problem Description with the word critical “alarm” shows an increase in reports from 189 in 2001 to 449 in 2004. Although some of the increase can be traced to better reporting, a doubling of reports makes the question an improvement due to Goal 6 and shows the need for a focused concern on clinical alarms as a patient safety issue.

Today’s alarm indicators go beyond the traditional audible and visual alerts in the bedside and nursing stations. New developments include alarm integration systems that combine alarms from various sources and intelligently manage and deliver messages to clinicians via pagers, nurse call systems, dashboards, tactile devices, or cell phones. As diagnostics move to the patient at the point-of-care, these alerts will not only include alarms from the physiological monitors, but will also include critical diagnostic results from the clinical laboratory, pathology, and imaging.

Much work has been done related to smart alarms, which use advanced signal processing of physiological data. Predictive alarms and statistical process control techniques have been applied to more intelligent use of adverse conditions. Standards have been developed by ISO/IEC for audible and visual requirements for alarm priority and parameter characteristics. Care management advances have been utilized in many facilities in response to Goal 6. Best practices have been published in clinical journals. The Association of periOperative Registered Nurses has published on clinical alarms systems testing and has a home study program as part of the subject. Organizations such as the Veterans Administration are focusing on safety at the VA National Center for Patient Safety. Educational materials on the VHA website describe the VHA Healthcare Failure Mode and Effects Analysis being used to evaluate ICU alarms. Notes are published about such topics as the failure of medical alarm systems using piping technology to notify clinical staff. The Anesthesia Patient Safety Foundation lists clinical alarms as an initiative and had an October 2004 workshop on audible alarms. As part of their Health Decisions subscription service, ECRI has published detailed guidance for healthcare facilities on the management of clinical alarms and routinely reports on serious patient incidents related to problems with clinical
Computerized Maintenance Management Systems for Clinical Engineering

Expanded, Practical and Timely Guidance!

A valuable resource for BMETs, clinical engineers, and other professionals who use computer technology to deliver medical support services. Experts from the field share their best practices, lessons learned, practical advice. Learn how to:

- Collect and use data to improve the quality and cost-effectiveness of equipment support activities
- Plan a CMMS project
- Evaluate commercial systems
- Use laptops effectively as a BMET field service tool
- Make the best use of a PDA in your system
- Develop a paperless management information system for clinical engineering
- And much more.

CALL NOW!
800-332-2264, ext. 217

AAMI members
$70 non-members
Order code: CMMCE
Source code: HI

alarms. Despite improved clinical strategies, clinical alarm issues persist and must be improved.

In 2005, the American College of Clinical Engineering (ACCE) Healthcare Technology Foundation put forth an initiative to improve patient safety by identifying issues and opportunities for enhancements in clinical alarm design, operation, response, communication, and appropriate activation to reduce alarm-related errors.

A task force has been formed to focus on clinical alarm management. Activities include audio conferencing, literature and hazard reviews, and the design and implementation of a clinical alarm survey.

At the 2005 AAMI Annual Conference in Tampa, AAMI and ACCE co-sponsored a town meeting on clinical alarms. The discussion included the role of alarm standards, developing prioritization systems, the difficulty in training clinical staff on alarms, and defining "What is an alarm?" The assembly stressed that improving alarms requires a systems approach.

A major focus of the task force is to develop a survey on clinical alarm usage, issues, and priorities for solutions. Pilot studies have been done in large medical centers to refine the survey content, allow review for statistical relevance, and assess distribution and scoring questions. The American Association for Critical-Care Nurses has participated in the development of the survey and has distributed it on their website to encourage its use. The survey is available online at the ACCE Healthcare Technology Foundation website (www.acce-ht.org). Interested parties are encouraged to complete the survey. Results will be published in 2006.

References